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Infinitesimal symmetry transformations of the 
Langevin equation 

J J Soares Net0 and J D M ViannaT 
Departamento de Fisica, Instituto de Cihc ias  Exatas, Universidade de Brasilia, 70910 
Brasilia DF, Brazil 

Received 27 August 1987, in final form 5 January 1988 

Abstract. The Lie algebra associated with, infinitesimal symmetry transformations of the 
equation of motion for a radiating charged particle embedded in the radiation field, i.e. 
the so-called Langevin equation, is determined. It is shown that the invariance group is a 
five-parameter group with a commutative three-parameter subgroup. 

1. Introduction 

If we neglect the force due to the magnetic radiation as is usual in many non-relativistic 
calculations, then the one-dimensional motion equation of a particle in the presence 
of radiation is (de la Pefia-Auerbach and Cetto 1977) 

mx = eE + F + mrx, T = 2e2/(3mc3) (1) 

where m is the mass, e the charge of the particle, F = F(x ,  t )  the external given force 
and E the electric field of the radiation. 

Equation (1) is a stochastic differential equation which can be solved, in principle, 
provided we known the properties of the stochastic process E (  t). It is a fundamental 
equation (the so-called Langevin equation) of the stochastic electrodynamics (de la 
Pefia-Auerbach and Cetto 1977, Santos 1974). Hence it is of interest to study some 
features of dynamical systems described by this equation. In the present paper we 
examine the infinitesimal invariance transformations. Several methods (Gonzales- 
Gascon 1977, Leach 1981, Lutzky 1978, Anderson and Davison 1974, Aguirre and 
Krause 1984) can be found in the current literature to study the invariance properties 
of differential equations. We shall use an extension of the method used by Aguirre 
and Krause (1984). 

2. Infinitesimal symmetry transformations 

We are interested in the invariance properties of the model Langevin equation. From 
equation (1) we can write with the usual notation for time derivatives 

2 = ( 1/ T ) X  - ( 1/ m7) F - (e/  m r )  E ( t ) (2) 
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For a force F linear in x ( F  = - Kx, K = constant, K > 0), we obtain 

x = ( l / ~ ) x  + ( K /  mT)x-(  e /  mT)E(  t )  (3) 

We consider the symmetries generated by infinitesimal transformations of the form 
where T, by equation ( l ) ,  is finite. 

t ’ =  t + E N ( x ,  t )  

x’=x+ET(X,  t )  

where E denotes a parameter such that 0 < E << 1. 

(4) and ( 5 ) ,  we obtain that T(x,  t )  and N ( x ,  t )  are such that 
From the assumed invariance of equation (3) under the infinitesimal transformations 

T ( x ,  t )  = G ( t )  ( 6 )  

N ( x ,  t )  = Cl,( t ) x  + f13( t )  ( 7 )  

where ai( t )  ( i  = 1,2,3)  satisfy the equations 

t l , ( t )  - ( 1 / 3 ~ , ) h , (  t )  = o 

and the binding relation 

& ( t )  -(1/7)A2( t )  - ( 3 K / m 7 ) h I (  t )  = 0. 

The system of equations (8)-( 10) has seven linearly independent solutions. Relation 
(11) is an additional condition; it restricts in some cases the number of linearly 
independent solutions. 

3. The Lie algebra associated with infinitesimal symmetry transformations 

It is known that the infinitesimal generators X ,  ( a  = 1 ,2 , .  . . , N where N is the number 
of parameters) of a Lie group satisfy the relation 

[Xa,  Xbl =fabXc (12) 

where f ib  are the structure constants, the square brackets denote antisymmetrisation 
of the indices a and 6, and the usual convention of summation on repeated indices is 
used. 

It is also known that in the ( t ,  x )  realisation and in some (Y parametrisation the 
infinitesimal generator can be written as 

X,(X, t )  = Na(x,  t ) a / a t  + T,(x,  t)d/dx (13) 

where in the present case a = 1,2, . . . , 7 ,  because the maximum number of parameters 
in the Lie group which leaves an ordinary differential equation of the third-order 
invariant is seven (Cohen 1931). 
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Substituting ( 1 3 )  into ( 1 2 )  and separating the coefficients of a l a r  and dldx, we find 
that (Gk; ,  = aGk/ar; G = N, T ;  k = a, b ;  r = x, t )  

f : b N c =  NON,;,+ T a N b ; x - N b N a ; ! -  T b N a ; x  (14)  
and 

f : b T c =  N a T b ; , +  T a T b ; x -  N b T a ; i -  T b T a ; x *  (15) 

By means of expressions ( 6 )  and ( 7 )  for N and T, we obtain from (14)  and ( 1 5 )  
the following equations to determine all structure constants: 

f f iba2l .c  = a l . a h 1 . b  -~,.bhl.a ( 1 6 )  

f : b a 2 . c  = a I . a f i 2 . b  - 0 l . b f i 2 . a  ( 1 7 )  

(18) 

( 1 9 )  

(20)  

- a l . b h 3 . a  - h 3 . b a 2 . a  - a 3 . b f i 2 . a  ( 2 1 )  

f : b a 3 . c  = a l . a h 3 . b + a 3 . a a n Z . b  - a l . b h 3 . a  - a 3 . b a 2 . a  

f : b h l . c  = f i l . a f i l . b S a i . a f i i I . b  - h l . b h i Z l . a  - a l . b h l . a  

f ; b h l . c  = hl.ah1.b + a l . a f i i . b  - h l . b f i l . a  - a l . b f i 1 . a  

f :b f i3 . c  = f i l . a f i 3 . b  + a l . a h 3 . b  + h 3 . a a 2 . b  + a 3 . a h 2 . b  - h l . b h 3 . a  

f : b h 3 . c  = h l . a h 3 . 6  + 2 h l . a f i 3 . b  + a l . a f i 3 . b  + h 3 . a a 2 . b  + 2 h 3 . a A 2 . b  

+ a 3 . a b 2 . b  - f i I . b f i 3 . a  - 2 f i l . a h 3 . 0  

- a I . b f i 3 . a  - f i 3 . b a 2 . a  - 2 f i 3 . b f i 2 . 0  - a 3 . b a 2 . a  ( 2 2 )  
where ( i  = 1 , 2 , 3 ;  a = 1,2 ,  . . . , 7 )  denotes function ai( t )  corresponding to the 
parameter a. 

Equations (16) - (22)  hold for all t .  Thus we consider them at t = 0 and this leads 
to the initial value problem of Na(x, t )  and Ta(x,  t )  ( a  = 1 ,2 , .  . . , 7 ) .  In order to 
analyse this problem, we note the general expressions for N ( x ,  t )  and T(x ,  t )  in some 
a -parametrisation are 

N ( x ,  t )  = . " f l , . a ( t )  ( 2 3 )  

T ( x ,  t ,  = a a ( a 2 . a ( t ) X f a 3 . a ( f ) ) .  ( 24 )  
Since a a  are arbitrary parameters in (23 )  and (24)  we can choose the values 

(G,  = aG/ar, G,, = a2G/dr2; G = N, T ;  r = x, t )  

a' = N(0,O) a 2  = N,(O, 0 )  a3  = N,,(O, 0 )  a4 = T(0,O) 

a 5  = T,(O, 0 )  a6 = &T,,(O, 0 )  a7 = Tx(O, 0 )  

and use these a as essential parameters of the group. It follows from ( 2 3 )  and (24)  that 

= 6a.1 f i l . a ( O )  = 8a.2 fiLa(0) = 80.3 

a 2 . a ( O )  = 8a.7 R 3 . a ( O )  = 6a.4 f i 3 . , ( 0 )  = Sa.5 

h 3 . a ( O )  = 28a.6* ( 25 )  
With results ( 2 5 )  and fi l ,a(0),  h2.a(0), h2,a(0), f i3 ,a(0)  determined by (8)-(10)  for 

t = 0 ,  the structure constants (and hence the Lie algebra) are obtained from (16) - (22) .  
We have the following non-null structure constants 

f : 5 = 1  f : 7 =  1 f : 6 = 2  f 2 7 = 1  f f4  = K / 2 m ~  

f f 6 = 1 / 7 .  f : 7  = e ~ ( 0 ) / 2 m ~  f:,= 1 .  



2490 J J Soares Neto and J D M Vianna 

Table 1. Lie algebra for equation X + ( e / m r ) E ( t ) - ( k / m r ) x = ( l / r ) x .  See text for expla- 
nation. 

XI 0 f (  k /  mr)X, x4 2X,+(1/r)X6 (e/2mr)E(0)X6 
x4 -$(k/mr)X, 0 0 0 x4 

x5 - x4 0 0 0 x5 

x6 -2x, - ( 1 / r)X, 0 0 0 X6 
x, -(e/2mr)E(0)X6 -x4 - x, -x6 0 

Using the structure constants enumerated above and (12) and (13) we obtain the 
Lie algebra presented in table 1 where one gets the commutator [ X , , X b ]  at the 
intersection of the ath row and the bth column. 

From table 1, it follows that the Lie algebra associated with the symmetry group 
of the one-dimensional Langevin equation is generated by five infinitesimal operators, 
and that it contains one commutative subalgebra, i.e. ( X 4 ,  X , ,  X 6 ) .  Hence, we have 
the result that the symmetry group which preserves the invariance of equation (3) is 
a five-parameter Lie group with a commutative three-parameter subgroup. 

4. Concluding remarks 

The Langevin equation belongs to a class of differential equations 2 = g(x, x, x, t )  with 
a convenient choice of coefficients. In principle, it is possible with the procedure used 
here to determine the symmetry group for all equations of this class. However, equation 
(3) has a direct and known physical interest. For this reason we have studied equation 
(3) specifically. We have determined the Lie algebra associated with infinitesimal point 
symmetries and found that the invariance group is a five-parameter Lie group with an 
Abelian three-parameter subgroup. It is interesting to note that by the present approach 
to obtain Lie algebras one uses the value of the function E ( ? )  at t = O  and it is not 
necessary to known the explicit expressions of the infinitesimal generators. The 
generators X ,  are obtained by considering the solutions a,( t )  ( i  = 1,2,3), t # 0, of 
equations (8)-(11). Since equation (10) depends on the radiation field E ( t )  and on 
E(?),  the process of determining n,(t) can represent a difficult problem. A study of 
this subject will be reported in a future paper. 
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